博客信息

Java,Python,Scala三种语言开发并部署Spark的WordCount程序

发布时间:『 2017-11-29 19:52』  博客类别:Hadoop/Spark  阅读(1600) 评论(0)

一、Java开发并部署Spark的wordcount

Java实现WordCount程序:

package com.spark.wordcount;

import java.util.Arrays;
import java.util.Iterator;
import java.util.Map;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction;

import scala.Tuple2;


public class WordCountApp {

    public static void main(String[] args) {
        /**
         * 1、创建SparkConf对象,设置Spark应用程序的配置信息
         */
        SparkConf conf =  new SparkConf();
        //设置spark应用程序的名称
        conf.setAppName(WordCountApp.class.getSimpleName());
        conf.setMaster("local");
        if(args.length>2) {
        	conf.setMaster(args[0]);
        }
        /**
         * 2、创建sparkContext对象--Java开发使用JavaSparkContext,scala开发使用SparkContext
         *    在saprk中SparkContext负责连接spark集群,创建RDD、累计量、广播量等
         *    Master参数是为了创建TaskSchedule(较低级的调度器,高层次的调度器为DAGSchedule),如下:
         *    如果setMaster("local")则创建LocalSchedule;
         *    如果setMaster("spark")则创建SparkDeploySchedulerBackend。在SparkDeploySchedulerBackend的start函数,会启动一个Client对象,连接到Spark集群。
         */
        JavaSparkContext sc = new JavaSparkContext(conf);

        /**
         * 3、sc中提供了textFile方法是SparkContext中定义的,如下:
         *      def textFile(path: String): JavaRDD[String] = sc.textFile(path)
         *    用来读取HDFS上的文本文件、集群中节点的本地文本文件或任何支持Hadoop的文件系统上的文本文件,它的返回值是JavaRDD[String],是文本文件每一行
         */
        
        String filePath = "\\new_workspace\\SparkTest\\src\\com\\spark\\wordcount\\wordCount.txt";
        if(args.length>1) {
        	filePath = args[1];
        }
        
        JavaRDD<String> lines = sc.textFile(filePath);
        System.out.println(conf);
        
        /**
         * 4、将行文本内容拆分为多个单词
         * lines调用flatMap这个transformation算子(参数类型是FlatMapFunction接口实现类)返回每一行的每个单词
         */
        JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>(){
            private static final long serialVersionUID = -3243665984299496473L;
            @Override
            public Iterator<String> call(String line) throws Exception {
                return Arrays.asList(line.split(" ")).iterator();
            }
            
        });
        
        /**
         * 5、将每个单词的初始数量都标记为1个
         * words调用mapToPair这个transformation算子(参数类型是PairFunction接口实现类,
         * PairFunction<String, String, Integer>的三个参数是<输入单词, Tuple2的key, Tuple2的value>),返回一个新的RDD,即JavaPairRDD
         */
        JavaPairRDD<String, Integer> pairs = words.mapToPair(new PairFunction<String, String, Integer>() {
            private static final long serialVersionUID = -7879847028195817507L;
            @Override
            public Tuple2<String, Integer> call(String word) throws Exception {
                return new Tuple2<String, Integer>(word, 1);
            }
        });

        /**
         * 6、计算每个相同单词出现的次数
         * pairs调用reduceByKey这个transformation算子(参数是Function2接口实现类)
         * 对每个key的value进行reduce操作,返回一个JavaPairRDD,这个JavaPairRDD中的每一个Tuple的key是单词、value则是相同单词次数的和
         */
        JavaPairRDD<String, Integer> wordCount = pairs.reduceByKey(new Function2<Integer, Integer, Integer>() {
            private static final long serialVersionUID = -4171349401750495688L;
            @Override
            public Integer call(Integer v1, Integer v2) throws Exception {
                return v1+v2;
            }
        });

        /**
         * 7、使用foreach这个action算子提交Spark应用程序
         * 在Spark中,每个应用程序都需要transformation算子计算,最终由action算子触发作业提交
         */
        wordCount.foreach(new VoidFunction<Tuple2<String,Integer>>() {
            private static final long serialVersionUID = -5926812153234798612L;
            @Override
            public void call(Tuple2<String, Integer> wordCount) throws Exception {
                System.out.println(wordCount._1+":"+wordCount._2);
            }
        });

        /**
         * 8、将计算结果文件输出到文件系统
         *  HDFS:使用新版API(org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;)
         *  wordCount.saveAsNewAPIHadoopFile("hdfs://ns1/spark/wordcount", Text.class, IntWritable.class, TextOutputFormat.class, new Configuration());
         *             使用旧版API(org.apache.hadoop.mapred.JobConf;org.apache.hadoop.mapred.OutputFormat;)
         *                 wordCount.saveAsHadoopFile("hdfs://ns1/spark/wordcount", Text.class, IntWritable.class, OutputFormat.class, new JobConf(new Configuration()));
         *             使用默认TextOutputFile写入到HDFS(注意写入HDFS权限,如无权限则执行:hdfs dfs -chmod -R 777 /spark)
         *                 wordCount.saveAsTextFile("hdfs://soy1:9000/spark/wordCount");
         */
        Map<String,Integer> map = wordCount.collectAsMap();
        for(String key : map.keySet()) {
        	System.out.println(key+":"+map.get(key));
        }

        /**
         * 9、关闭SparkContext容器,结束本次作业
         */
        sc.close();

    }
}

运算结果:

JSDLF:1
HELLOWORLD:22
SJF:1
LDSDJEWUROWJ:1
FDSLKFJS:1
FDSK:1
COUNT:2
:1

部署:

spark-submit wordcount.jar local file:/data0/wordcount/wordcount.txt
spark-submit wordcount.jar spark hdfs:/data/logs/wordcount/wordcount.txt

二、使用Python开发Spark的wordcount

Python实现wordcount程序

from operator import add
from pyspark import SparkContext

INPUT_FILE = 'hdfs://dmp/data/logs/wordcount/wordcount.txt'
MASTER = 'spark://n1:7077'

sc = SparkContext(MASTER,"WordCountApp")

text_file = sc.textFile(INPUT_FILE)

counts = text_file.flatMap(lambda line:line.split(" ")).map(lambda word:(word,1)).reduceByKey(lambda a,b:a+b);

results = counts.collectAsMap();

for key in results.iterkeys():
    print key + ":" + str(results[key])

运行结果:

COUNT:2
:1
FDSLKFJS:1
FDSK:1
JSDLF:1
HELLOWORLD:22
LDSDJEWUROWJ:1
SJF:1

部署:

spark-submit wordcount.py

三、使用scala开始Spark的wordcount

scala实现wordcount程序

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext

object WordCountApp {
  
  def main(args: Array[String]) {
    val conf = new SparkConf();
    conf.setMaster("spark://n1:7077");
    conf.setAppName("WordCountApp");    
    val sc = new SparkContext(conf);
    val lines = sc.textFile("hdfs://dmp/data/logs/wordcount/wordcount.txt");
    lines.flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).collect.foreach(println);
    sc.stop();
  }
  
}

运行结果:

(FDSLKFJS,1)
(SJF,1)
(,1)
(JSDLF,1)
(COUNT,2)
(FDSK,1)
(HELLOWORLD,22)
(LDSDJEWUROWJ,1)

部署:

spark-submit --class com.spark.wordcount.WordCountApp wordcount.jar


关键字:   无
评论信息
暂无评论
发表评论
验证码: 
Powered by IMZHANGJIE.CN Copyright © 2015-2025 粤ICP备14056181号